

Tris(4-chlorophenyl)methane (TCPMe) and Tris(4-chlorophenyl)methanol (TCPMOH) Research Concept

Scott Masten, Ph.D.

Director, Office of Nomination and Selection
National Toxicology Program, NIEHS

NTP Board of Scientific Counselors Meeting July 23-24, 2009

TCPMe and TCPMOH Nomination

Nominated by NIEHS for toxicological characterization

- Apparent widespread occurrence and persistence in the environment
- · Limited availability of toxicity data
- Found in human tissues
 - · Presumed to be bioaccumulative
- TCPMOH is a potent competitive inhibitor of human and rodent androgen receptors *in vitro*
- Need to characterize potential human health hazard relative to other endocrine active agents

TCPMe and TCPMOH Background

- Use and Production
 - TCPMe is a by-product in the production of DDT
 - TCPMOH is a presumed metabolite of TCPMe
 - · Some industrial uses reported but no production data located
- Human Exposure
 - · Primary human exposure presumed to be from consumption of food
 - Human adipose, liver, bile, breast milk (not U.S.)
 - High end: TCPMe ~70 ng/g; TCPMOH ~38 ng/g lipid
 - · Bioaccumulates in marine food web
 - Marine mammal blubber levels > 1 μg/g lipid

TCPMe and TCPMOH Structures

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

TCPMe

TCPMOH

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

p,p'-DDT

Dicofol

TCPMOH Toxicity

- 28 day oral study in rats
 - Changes in liver, spleen, blood counts at ~10 mg/kg
- Endocrine activity in vitro
 - Altered human sperm motility, vitality, acrosome reaction
 - Binding/antagonism at rat and human androgen receptors
 - · Conflicting data on activity against human estrogen receptor
- Endocrine activity in vivo
 - 28 day oral study in sexually mature male rats
 - · Increased serum FSH, no effect on serum LH or testosterone
 - · No effect on testicular morphology or occurrence of apoptotic figures
- No information on ADME, genotoxicity, immune, developmental, reproductive toxicity

Proposed Approach

Tier 1

- ADME studies
 - · Single and multiple oral exposures
 - · Blood and tissue levels, metabolite identification
- Endocrine modulation studies (androgen and estrogen receptors)
 - In vitro, in vivo (confirmatory)
- · Genotoxicity studies

Tier 2

- Subchronic toxicity studies, in utero / perinatal exposure
 - Immune, developmental, reproductive evaluations in F1

Tier 3

- Multigeneration reproductive toxicity studies
- Carcinogenicity studies

Questions and Comments